傅里叶级数


根据傅里叶定理, 我们可以把 C(R/Z; C) 中的任意一个函数写成傅里叶级数的形式.
傅里叶级数与三角多项式的关系, 就像幂级数与多项式的关系那样.
为了把函数写成傅里叶级数的形式, 我们将使用内积结构.

此处和科恩的量子力学遥相呼应, 而且更加言简意赅. 这就是阅读的乐趣, 在不同的著作之间看见关联. 话说回来, 因为有量子力学的背景在前, 此处才会十分的具象化.

接下来, 我们将把傅里叶反演公式和 Plancherel 公式推广到
C(R/Z; C) 中的一般函数上, 而不仅仅是三角多项式上.
(上述公式也可以推广到像方波这样的间断函数上, 但我们不讨论这部分内容.)
为此, 我们将会用到魏尔斯特拉斯逼近定理,
但这一次我们要用三角多项式来一致逼近连续的周期函数.
正如在多项式的魏尔斯特拉斯逼近定理的证明中用到了卷积一样,
我们也要为周期函数定义一个卷积的概念.

在数学内容的讲解布局上, 陶哲轩堪称我所见者第一人.

这个定理可以直接用多项式的魏尔斯特拉斯逼近定理来证明,
而这两个定理都是更一般的斯通-魏尔斯特拉斯定理的特殊情形,
在这里我们不讨论斯通-魏尔斯特拉斯定理.
注意, 上面这个式子与紧支撑函数的卷积概念稍有不同,
因为我们只在 [0, 1] 上求积分, 而不是在整个 R 上求积分.
因此从原则上来说, 我们为符号 f * g 赋予了两个不同的含义.
但在实践中, 这并不会造成混淆,
因为一个非零的函数不可能同时既是周期函数又是紧支撑函数.

多元微分学

注 从这个引理可以看出, 全可微性蕴涵着方向可微性.
但是, 反之不成立, 与方向导数密切相关的一个概念是偏导数的概念.

线性! 此处值得回味~

梯度, 偏导数, 方向导数; 又是个值得回味的地方~ 线性!

也就是说, 我们可以用矩阵和矩阵乘法来描述链式法则,
以此来代替用线性变换和复合运算描述的链式法则.

线性! 链式法则~

妙啊~

注意, 如果没有"二阶导数是连续的"这个假设前提, 那么克莱罗定理就不成立了.
我们将给出压缩映射定理的一个推论, 它对于反函数定理有着重要的作用.
这个推论主要是指对于任意一个定义在球上的映射 f 而言,
如果 f 只是对恒等映射的"小小的"变动,
那么 f 仍是一对一的, 而且它不会在球的内部造成任何洞.

勒贝格测度


重复一个例子: 如果 \(E\) 只包含了一部分边界点, 而不包含其他边界点, 那么 \(E\) 既不是开的也不是闭的.


引理 每一个开集都能写成可数个或者有限个开盒子的并集.
就像之前讨论的那样, 我们在现实生活中处理的绝大多数集合都是可测的,
因此我们在现实生活中处理的大部分函数自然也是可测的.
例如, 连续函数就是可测的.
遗憾的是, 两个可测函数的复合并不一定是可测的.
不过我们还有下面这个最佳结果: 连续函数作用在可测函数上的结果是可测的.

勒贝格积分

我们给出简单函数的三个基本性质:
它们构成一个向量空间,
它们是特征函数的线性组合,
它们逼近可测函数.
更准确地说, 我们有如下三个引理.

注意, 积分的这个定义与我们对积分 (至少非负函数的积分) 的直观概念相对应,
也就是说, 我们把积分看作函数图像下方的面积 (或高维情形下的体积).
关于非负简单函数的积分, 还有另外一种表述.
现在我们从非负简单函数的积分过渡到非负可测函数的积分.
有时我们允许可测函数的取值为 +∞.

注 命题 (d) 十分有趣, 它说的是我们可以修改函数在任意测度为零的集合上的值
(例如, 你可以修改每一个有理数上的值), 而且这不会对其积分值产生任何影响.
这似乎表明任何单独的点, 即使是测度为零的点集, 都对函数积分的结果没有任何"贡献".
只有正测度的点集才会对积分产生影响.
在前几章中我们已经看到, 积分运算与极限运算
(或者类似于极限的概念, 比如上确界) 的次序并不总是可以交换的.
但是, 倘若函数序列是单调递增的,
那么勒贝格积分与极限运算的次序就是可以交换的.




由此可见, 与黎曼积分相比, 勒贝格积分可以处理更多的函数.
这是我们为什么在分析学中使用勒贝格积分的主要原因之一.
另一个原因是, 勒贝格积分可以很好地与极限运算进行交互,
这一点已经在勒贝格单调收敛定理, 法都引理以及勒贝格控制收敛定理中得到证明.
但在黎曼积分中, 并不存在这样的相应定理.

相对而言, 最后两章, 略显单薄~

结: 2024 年 10 月