鉴于原著的基本思想和理论框架已成经典, 作者至今未予修订,
所以决定新的中文版以科学出版社 1980 年版为基础,
只对译文的个别疏漏做必要的订正和补充.

过去的四十年可以毫不夸张地说是宇宙学发展日新月异的黄金时代,
这个领域的专著或教科书几乎每十年甚至五年就得更新.
2008 年温伯格教授的 <宇宙学> (向守平译, 中国科学技术大学出版社, 2013)
无疑是目前最新的佳作之一, 值得向读者推荐.

邹振隆, 2014 年于北京

历史介绍

Gauss 也认识到任一曲面的基本的内在性质是度规函数 d(x, X),
它决定 x 和 X 在曲面上沿着它们之间的最短路径的距离.
例如, 圆锥或圆柱具有与平面相同的局部内在性质,
因为平面可以卷成圆锥或圆柱而不致伸缩或撕裂 (也就是不致使度规关系产生畸变).
另一方面, 所有的制图者都知道, 球面不可能展为平面而不产生畸变,
因而它的局部内在性质与平面不同.
同样很明显, 只有当曲率是常数时, Euclid 的其余几个公设才能满足,
因为这几个公设描述的是内在均匀的空间;
而如果曲率是逐点变化的, 那么空间的内在性质也随之而变.
由 Maxwell 的电动力学与 Einstein 的力学所组成的新物理学,
就满足了新的相对性原理, 即狭义相对性原理.
这个原理说, 一切物理方程在 Lorentz 变换下不变.
在 Maxwell 以前, 可以假设全部物理学在 Galileo 群下具有不变性.
但 Maxwell 方程在 Galileo 群之下没有不变性.
因此在半个世纪之中, 似乎只有力学才遵守相对性原理,
而电动力学则不遵守. 在 Einstein 之后,
弄清楚了力学与电动力学的方程都具有不变性,
然而是对于 Lorentz 变换不变, 而不是对于 Galileo 变换不变.
等效原理是通过物理方程在一般坐标变换 (而不仅是在 Lorentz 变换)
下保持不变性的要求而纳入这种表述的. 虽然我不知道, 除开等效原理外,
"广义相对性原理" 本身在 Einstein 心目中有多少独立的意义.

狭义相对论

两点体悟:

现在看 Lorentz 变换, 已然多了些亲切感, 而不是被动的接受公式;

不要执着于先夯实数学基础, 再学习物理. 对于普通人而言, 物理学家讲数学, 才是更适合入门的. (更容易把握数学的实在感, 这是普通人学数学的一个门槛.)

Lorentz 变换

不喜欢原书角标的排版, 所以做了微调.

时间膨胀

粒子动力学

能量和动量

矢量和张量

电流与密度

电动力学

能量-动量张量

自旋

相对论流体动力学

相对论的非理想流体

Lorentz 群的表示

时序和反粒子

等效原理

张量分析

引力效应

曲率

爱因斯坦场方程

作用量原理

对称空间